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1 Recall

Convex Function
Definition 1. Let f : X → R, where X is a convex subset of Rn. Then f is convex if and only if for
any x, y ∈ X and λ ∈ (0, 1),

f (λx+ (1− λ)y) ≤ λf(x) + (1− λ)f(y).

Also, we discussed the following lemma yesterday.

Lemma 1. Let X ⊆ Rn be non-empty convex set.

1. If f : X → R is differentiable, then

f(x) is convex ⇐⇒ f(y) ≥ f(x) + ⟨∇f(x), y − x⟩ , ∀x, y ∈ X

2. If f : X → R is twice differentiable, then

f(x) is convex ⇐⇒ ∇2f(x) ≥ 0, ∀x ∈ X

where ∇f 2(x) ≥ 0 denotes the Hessian matrix of f is positive semidefinite.

2 Non-differentiable Convex Functions
Definition 2. Let X be a convex set and f : X → R be a function. A vector w ∈ Rn is called a
subgradient of f at point x ∈ X if

f(y) ≥ f(x) + wT (y − x), ∀y ∈ X

We denote ∂f(x) = {all subgradient of f at x}.

Definition 3. The epigraph of f : X → R is defined by

epi(f) := {(x, t) : x ∈ X, t ≥ f(x)} ⊆ X × R ⊆ Rn × R

Lemma 2. Let X be a convex set and f : X → R be a function. Then

f is convex ⇐⇒ epi(f) is convex.

Proof. “ =⇒ ” Let (x1, t1), (x2, t2) ∈ epi(f) and λ ∈ (0, 1). Then, by definition, we have

t1 ≥ f(x1) and t2 ≥ f(x2)

This implies that

λt1 + (1− λ)t2 ≥ λf(x1) + (1− λ)f(x2) ≥ f (λx1 + (1− λ)x2)

=⇒ (λx1 + (1− λ)x2, λt1 + (1− λ)t2) ∈ epi(f)

1 Prepared by Max Shung



Thus, epi(f) is convex.
“ ⇐= ” Suppose f is not convex, then there exists x1, x2 ∈ X and λ ∈ (0, 1) such that

f (λx1 + (1− λ)x2) > λf(x1) + (1− λ)f(x2)

At the same time, (x1, t1), (x2, t2) ∈ epi(f) for t1 = f(x1), t2 = f(x2).
Then it implies that

=⇒ λt1 + (1− λ)t2 < f(λx1 + (1− λ)x2)

=⇒ (λx1 + (1− λ)x2, λt1 + (1− λ)t2) ̸∈ epi(f)

This would lead to epi(f) is not convex.

Proposition 3. Let X ⊆ Rn be convex and f : X → R be a function.

1. If ∂f(x) ̸= ∅, for any x ∈ X , then f is convex.

2. If f is convex, then ∂f(x) ̸= ∅ for any x ∈ ri(X).

Proof. 1. Let x, y ∈ X and λ ∈ (0, 1). Define z := λx+ (1− λ)y.
Since the subgradient of f(z) is non-empty, i.e. ∂f(z) ̸= ∅, there exist w ∈ ∂f(z).
By definition, we have f(y) ≥ f(z) + wT (y − z) for all y ∈ X .
Therefore, we have {

f(y) ≥ f(z) + wT (y − z) (1)

f(x) ≥ f(z) + wT (x− z) (2)

Multiplying (1) by (1− λ) and (2) by λ then sum together yields

λf(x) + (1− λ)f(y) ≥ f(z) + wT (λ(x− z) + (1− λ)(y − z))

= f(z) + wT [λ ((1− λ)x+ (λ− 1)y) + (1− λ)(−λx+ (λ)y)]

= f(z) + wT (0)

= f(z)

f (λx+ (1− λ)y) ≤ λf(x) + (1− λ)f(y)

This proves that f is convex.

2. If f is convex, then by the previous lemma, the epigraph epi(f) is also convex.
Let x ∈ ri(X), then z := (x, f(x)) ∈ epi(f) ⊆ Rn+1.
Since z + (0,−ε) = (x, f(x) − ε) ̸∈ epi(f), ∀ε > 0, then the point z is lying on the relative
boundary of epi(f).
By the separation theorem, there exist (w, v) ∈ Rn × R such that

⟨(w, v), z⟩ ≥ ⟨(w, v), (y, t)⟩ , ∀(y, t) ∈ epi(f)

⇐⇒ wTx+ vf(x) ≥ wTy + vt, ∀y ∈ X, t ≥ f(y) (*)

Then, we claim the followings:

• We must have v ≤ 0, otherwise lim
t→+∞

vt = +∞ and the inequality fail to satisfy.

• Also, we have v ̸= 0, otherwise wTx ≥ wTy for any y ∈ X . This implies

wTx ≥ wT (x+ εw)︸ ︷︷ ︸
∈X

= wTx+ ε∥w∥2

and contradiction occurs since ε∥w∥2 > 0.
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From the above, we can conclude that v < 0.
Since wTx+ vf(x) ≥ wTy + vt, ∀y ∈ X, t ≥ f(y), dividing both sides by v < 0 yields:

wT

v
x+ f(x) ≤ wT

v
y + t, ∀y ∈ X, t ≥ f(y)

Letting t = f(y) in (*), we obtain

f(y) ≥ f(x) +

(
wT

v

)
(y − x), ∀y ∈ X

which implies that
w

v
∈ ∂f(x), ∀x ∈ ri(X).

— End of Lecture 12 —
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